Ankle Fixation System™

System Brochure
<table>
<thead>
<tr>
<th>Anatomy</th>
<th>Fracture</th>
<th>Implant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibula</td>
<td>Transverse</td>
<td>Ankle Hook Plate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semi-Tubular Plate</td>
</tr>
<tr>
<td></td>
<td>Oblique</td>
<td>Sidewinder Plate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semi-Tubular Plate</td>
</tr>
<tr>
<td></td>
<td>Comminuted</td>
<td>Semi-Tubular Plate</td>
</tr>
<tr>
<td>Tibia</td>
<td>Transverse</td>
<td>Medial Malleolar Sled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ankle Hook Plate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medial Malleolar Pin Plate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.0mm Cannulated Compression Screw</td>
</tr>
<tr>
<td></td>
<td>Vertical</td>
<td>Ankle Hook Plate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medial Malleolar Pin Plate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.0mm Cannulated Compression Screw</td>
</tr>
<tr>
<td>Tibia/Fibula</td>
<td>Syndesmosis Injury</td>
<td>4.0mm Cortical Screw</td>
</tr>
</tbody>
</table>

Recommended
Sidewinder Plate™
Double antiglide plate with opposing compression tabs eliminate need for lag screws

Typical uses:
• Short oblique fibula fractures

Sizes:
- 6 Hole: 69 mm
- 7 Hole: 76 mm

Left & Right Plates
Narrow, Medium & Wide tab widths
Locking option available

Screw holes accommodate:
- Locking/non-locking cortical screws
- Cancellous screws
- Syndesmosis screws
- Bioabsorbable syndesmosis screw

Opposite view

Compression tab for compression and anti-glide effect

Slotted hole for use with Xpander to distract or compress
(reference pg. 9, 10)

Triple lead locking threads for ease of insertion

Position plate
Insert screws
Crimp tabs
Final fixation
Ankle Hook Plate™
Contoured plate with intramedullary tines for enhanced rotational stability

Typical uses:
- Lateral and medial malleolus fractures

Sizes: Lengths:
- 4 Hole 57 mm
- 6 Hole 73 mm
- 8 Hole 88 mm
- 10 Hole* 118 mm
- 12 Hole* 136 mm

Locking option available
* Special Order

Screw holes accommodate:
- Locking/non-locking cortical screws
- Cancellous Screws
- Syndesmosis Screws
- Bioabsorbable Syndesmosis Screws

Slotted hole for use with Xpander to distract or compress

Triple lead locking threads for ease of insertion

Intramedullary tines for increased rotational stability

Offset screw holes to reduce stress risers

Drill
Seat hooks
Compress fracture
Final fixation
Medial Malleolar Sled™
Simple one-piece tension band combines surface and intramedullary fixation

Typical uses:
- Medial malleolus fractures
- Fixation of medial malleolar osteotomies

Lengths (L):
- MMSLED-35 (30 mm)
- MMSLED-42 (37 mm)
- MMSLED-60 (51 mm) *

Special Order
Medial Malleolar Pin Plate™
Locking pin plate provides buttressing support with intramedullary fixation

Typical uses:
- Transverse and vertical shear fractures of the distal tibia

Sizes:

<table>
<thead>
<tr>
<th>Lengths</th>
<th>3 Hole*</th>
<th>4 Hole*</th>
</tr>
</thead>
<tbody>
<tr>
<td>47 mm</td>
<td></td>
<td>53 mm</td>
</tr>
</tbody>
</table>

*Special Order

Drill
Impact
Compress
Final fixation
Semi-Tubular Plate
Contoured plate with offset screw holes for greater load support

Typical uses:
- Distal / proximal long bone fixation

Sizes:
- 6 Hole 67 mm
- 8 Hole 85 mm
- 10 Hole 103 mm
- 12 Hole* 150 mm
- 15 Hole* 178 mm

*Special Order

4.0 Cortical Screw
Low-profile, self-tapping screw for enhanced bone purchase

Typical uses:
- Syndesmosis fixation
- Posterior malleolar fixation

Lengths:
- 35, 40, 45, 50, 55, 60 mm

4.0 Cannulated Compression Screw
Low-profile, self-drilling, self-tapping screw for fracture fixation

Typical uses:
- Distal tibial metaphyseal fractures

Lengths:
- 35, 40, 45, 50, 55, 60 mm
Screws

<table>
<thead>
<tr>
<th>Lengths</th>
<th>3.2 mm cortical HEX3.2-XX</th>
<th>3.2 mm locking cortical LCBS3.2-XX</th>
<th>3.8 mm cancellous CAB3.8-XX</th>
<th>4.0 mm cortical HEX4.0-XX</th>
<th>4.0 mm cannulated compression screw CCS4.0-XX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>08-24 mm (2mm increments)</td>
<td>08-24 mm (2mm increments)</td>
<td>10-40 mm (2mm increments)</td>
<td>35-60mm (5mm increments)</td>
<td>35-60mm (5mm increments)</td>
</tr>
<tr>
<td>Drill Bits</td>
<td>2.3 mm</td>
<td>2.3 mm</td>
<td>2.3 mm</td>
<td>3.2 mm (4.0mm overdrill)</td>
<td>3.2 CL mm (Cannulated Long)</td>
</tr>
<tr>
<td>Guides</td>
<td>GUIDE-2.30/3.20</td>
<td>GUIDE-LCBS2.3</td>
<td>GUIDE-2.30/3.20</td>
<td>MGUIDE-4.0</td>
<td>MGUIDE-4.0</td>
</tr>
<tr>
<td>Taps</td>
<td>3.2 mm</td>
<td>3.2 mm</td>
<td>n/a</td>
<td>4.0 mm</td>
<td>n/a</td>
</tr>
<tr>
<td>Countersink</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>AFS-CSINK</td>
<td>AFS-CSINK</td>
</tr>
<tr>
<td>Drivers</td>
<td>2.5 mm HEX</td>
<td>2.5 mm HEX</td>
<td>2.5 mm HEX</td>
<td>2.5 mm HEX</td>
<td>2.5 mm HEX CANNULATED</td>
</tr>
<tr>
<td>Washer</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>AFSW</td>
</tr>
</tbody>
</table>

Note: The 1.6mm k-wires are used with the CCS4.0-XX.
General Tools

- Plate Bender
 BNDR

- Modular Handle
 MODHNDL

- Quick Handle
 QUICK-HNDL

- Ratchet Handle
 RATCH-HNDL

- Expander
 XPANDER

- Impactor
 SLED-IMPACTR

- Countersink
 AFS-CSINK

- Peg Guide Extender
 PEG-XTNDR

- Medial Malleolar
 Pin Plate Wire Inserter
 MPP-INSERTR

- Crimper
 CRIMPR

- Clamp
 SWBC

Guides

- Drill Guide 2.30/3.20 mm
 GUIDE-2.30/3.20

- Drill Guide for 3.2 mm Locking Screw
 GUIDE-LCBS2.3

- Hook Plate Drill Guide
 HOOK-GUIDE

- Medial Malleolar Sled Guide
 MMSLED-GUIDE

- Medial Malleolar Sled Washer Guide
 MMSLEDW-GUIDE

- Medial Malleolar Pin Plate Guide
 MPP-GUIDE

- Drill Guide for 4.0mm Screw
 MGUIDE-4.0

Gauges

- Large Depth Gauge
 GAUGE-L

- Wire Gauge
 WIRE-GAUGE
1. Insert hook in hole away from fracture
2. Squeeze handle; tighten screw
3. Final fixation
Insert hook in hole close to fracture
Squeeze handle; tighten screw
Final fixation

EXPFANDER TOOL - DISTRACTON

1. Insert hook in hole close to fracture
2. Squeeze handle; tighten screw
3. Final fixation
The technique presented is one suggested surgical technique. The decision to use a specific implant and the surgical technique must be based on sound medical judgment by the surgeon that takes into consideration factors such as the circumstances and configuration of the injury.